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Table 1 Effects of varying K

00

0.136
0.0
0.55

I2)max 3.02

where

u -+ rflt(l - KG),

Put y = QOv/tyWii, and 71 =
that approximately

F3Ti Ti3
11 rQH ^^ 1M- — /dii^JL ' 2 2

6.8 1.4
0.136 0.139
0.020 0.100
0.50 0.45
2.63 2.29

w -> 0, y ->• oo

KOrji2 , .
2 Ti(l Ti)2

0 <

1.0 0.9 0.8 0.7 0.6 0.55
0.143 0.145 0.148 0.153 0.165 0.185
0.143 0.161 0.184 0.218 0.274 0.336
0.40
1.98
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and

w =

= 0, 72 > 1

(5)

(6)

These expressions satisfy Eqs. (1) and (2) at the surface
y. = 0, together with the boundary conditions in. Eq. (4).
If they are substituted into the equations obtained by
integrating (1) and (2). with respect to y across the boundary
layer [making use of Eq. (3).], the resulting equations are of
the following form :

, in)

and

(7)

17,, 172) (8)
where \f/ = K6. These equations have been integrated con-
currently for various values of K by a step-by-step process,
using the Ace computer of the Mathematics Division of the
National Physical Laboratory. If the solution indicates that
i/^i2 reaches the value 3, then at this point Eq. (5) shows that
du/dy is zero at the surface, implying separation of the u
component profile. If K is very large and \l/ is finite at
separation, this means that 6 at separation must be very
small, and the rotation can have had no appreciable effect
on the flow. Thus when K -> c°, so that the terms in G
and L of Eqs. (7) and (8) vanish, the former equation becomes
equivalent to that for a two-dimensional flow with a linear
adverse external-velocity gradient, as solved by Howarth.3
The accurate numerical solution of this problem has ^ =
0.120 at separation. Using step lengths in \[/ of 0.01 and
0.005, one obtains \f/ = 0.136 and 0.134, respectively, at
separation. The errors due to the approximations made in
Eqs. (5) and (6) are thus fairly small. It was considered
sufficiently accurate to use the step length \l/ = 0.01 in the
subsequent calculations for smaller values of K. Here
separation does not occur so close to the leading edge, and
the rotation has an effect on the flow, postponing separation
till a higher value of \[/ is reached. Thus the pressure rise
between the leading edge and separation is increased. This
is shown in Table 1, where \l/s is the value of ^ at separation,
6S being the corresponding angle in radians.

For values of K less than about 0.548, i£?7i2, which near
the leading edge increases with increasing ^, reaches a maxi-
mum value of less than 3 and then decreases again. Thus
the separation condition is never reached, and presumably
the boundary layer is stabilized completely against separa-
tion by a linear adverse external-velocity gradient.

Fig. 1 Helical surface
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A Further Note on Propagation of
Thermal Disturbances in Rarefied-Gas

Flows

J. G. LOGAN*

Aerospace Corporation, Los Angeles, Calif.

IN a recent note,1 the small-disturbance rarefied-gas equa-
tions for one-dimensional nonsteady flow were shown to

satisfy the characteristic equations

± 0.813

±2.13^

= ( 0.487^
\ Po

= L78
Po

T 0.417 -

— ] (1)

Co

(2)

assuming the existence of external heat addition H(x,t) and
external forces F(x,t) and including changes in the character-
istic quantities as t -*- t f . The characteristic quantities PI±
and P2± are defined by

= 1(0 - 0.51p -

= [0 + 0.78p
(l/co)[0.33(g/p0) -0.42w] (3)

(4)
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Fig. 1 Thermal disturbance propagation in very rarefied-
gas field

Here p is the perturbation pressure, 6 the perturbation tem-
perature, u the velocity, r the normal stress, and q the heat
flux. The relaxation time is defined by tf = juo/Po- In Eqs.
(1) and (2), x,t, and the propagation velocities GI and c2 are
written in the dimensionless form

L 1 L - = 0.813 - = 2.13
Co

As an illustrative example, the disturbance produced by a
plate suddenly heated in a rarefied-gas field, initially in
equilibrium at a temperature TO, can be calculated assuming
F = H = 0, L/CQ « tf and that specular reflection does not
occur at the plate. The field particles are absorbed and re-
emitted with a Maxwellian distribution at the wall tempera-
ture Tw. Continuity of mass and the equation of state re-
quire that2

sw + (Ow/2) pw = u = 0

The characteristic values at the heated wall are P2+ = 1.39
ewj p1+ = 0.740W. At the unheated wall (1), (9 = 0, and the
fast characteristic results in an average pressure p = 1.080W.
At wall (2) , the slow and fast characteristics yield an average
pressure p = Q.56W (Fig. 1).

The heated plate consequently produces a pressure dis-
turbance that is transmitted by the rarefied-gas field and re-
sults in a positive pressure or repulsive force at (B) when
Bw > 0 and a negative pressure or attractive force when 6W < 0.

This thermal disturbance propagation in the rarefied-gas
field which occurs in the limit L/tfcQ « 1, F = H = 0 is
unique in that relatively few field particle collisions occur
during the propagation. Disturbances originated at a
boundary will not be altered during propagation by other
disturbances existing in the field and will be altered only by
collisions at another boundary. Therefore, the thermal dis-
turbances initiated at boundaries will propagate unchanged
in the field.

In the limit tf » t, when F = H = 0, the one-dimensional
equations for longitudinal disturbances can be written in
the form

, 0 - 0.51p* - 0.11- )pj +

0.813 - 0.33

c0

- 0.42 - ) =
Co/

0 (5)

0.813 - 0 - 0.510 - 0^
.11 - J = 0

0o/
(6)

0.780
Po

2.13 ^-(0.85 -^ + 1.66 - J = 0 (7)
OX\ pQCQ C0/

-•( 0-85-f-
PoCo

1.66 -
Co

2.13 - 0.780+ 1.18- = 0 (8)
0o

By elimination of the terms containing u and q, the following
propagation equations are obtained for the longitudinal tem-
perature, stress, and pressure disturbances :

- 0.11 - )
0o/ (9)

Z T t ( e + 0.78p + 1.18 - =

(2.13)2 ff + 0.78p + 1•18s) (10)

The equations for the propagation of small plane disturb-
ances, Eqs. (1) and (2), also may be written in the following
form:

± V]-Pi,2± = 0
± V] x P1)2± = 0

where, tf » t, F = H = 0, Pi,2 = iPi,2, c is the dimensionless
propagation velocity, and n is a unit vector along the direc-
tion of propagation. The forward propagating plane longi-
tudinal disturbances consequently satisfy equations of the
form

V-P + (l/c)(dn-P)/&] = 0

V xP = 0
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A Further Note on Propagation of
Transverse Disturbances in

Rarefied-Gas Flows
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LEES and Yang1 recently have shown that the two-dimen-
sional Grad equations for the rarefied-gas field, when

applied to the Rayleigh problem, indicate the propagation
of small transverse shear disturbances along distinct char-
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