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SURVEY OF VELOCITY REQUP3MEETS AND FLIGHT MECHANICS FOR MANNED MARS MISSIONS 

E .  B r i a n  Pritchard* 
NASA Langley Research Center 
Langley Stat ion,  Kampton, Va. 

ii 
Summary i n  nature t o  the  Earth than any of t he  other planets  

of  t h i s  solar system. It m u s t  be our purpose t o  

accord with the  na t iona l  resources which may be 
avai lable  for such a mission. 

The manned Mars mission is discussed i n  terms define t h e  most a t t r a c t i v e  mission p ro f i l e s  i n  
of t he  propulsive veloci ty  requirements of t h e  m i s -  
s i on j  t h e  Earth en t ry  v e l o c i t i e s  associated w i t h  
sho r t  mission t r i p  times; and r een t ry  vehicle lift- 
drag-rat io  requirements f o r  Earth atmospheric 
braking and landing. 

Many preliminary s tudies  have been i n i t i a t e d  
both within the  NASA organization and by industry.  
As pointed out i n  these s tudies ,  t he  major techni- 

A survey of t h e  recent l i t e r a t u r e  reveals t h a t  c a l  problems t o  be resolved include such diverse 
t o t a l  propulsive v e l o c i t i e s  of about 64,000 fps  a r e  areas as communications, long-term l i f e  support i n  
required for t h e  so-called short  (400-500 day) mis- space, guidance and navigation, meteoroid protec- 
s ions u t i l i z i n g  t h e  o r b i t a l  rendezvous concept i n  t i on ,  s o l a r  radiat ion protection, propulsion, and 
t h e  most favorable launch period, 1970-72. The high-speed entry in to  planetary atmospheres. The 
least favorable period of 1978-80 requires  about 
92,000 fps  f o r  t he  all-propulsive mission mode. 
U t i l i z ing  aerodynamic braking on Earth return 
reduces these values of  propulsive ve loc i ty  t o  
38,000 fps  and 49,000 fps, respect ively.  
t h e r  reduction i s  obtained by t h e  use of t h e  atmos- 
pheric  braking mode at both Earth and Mars. 
t h i s  case, t h e  propulsive ve loc i ty  requirement i s  
26,000 fps and 34,000 fps, respect ively.  

most s ens i t i ve  parameters a f f ec t ing  t h e  basic mis- 
sion have been defined and optimization procedures 
developed t o  minimize the  t o t a l  propulsion energy 
requirements of t he  manned Mars mission. 

This mission is  primarily influenced by two 
A fur- 

In  factors :  the eccen t r i c i ty  of  t h e  Martian o r b i t  
about t h e  Sun and t h e  angular i ty  of the  Mars orbi-  
t a l  plane with respect t o  the  plane of the ec l ip -  
t i c .  Minimum energy missions obviously occur for  

near per ihel ion.  
maximum t r a n s f e r  plane angle changes when Mars is 
near aphelion. Since the  period of t he  Earth-Mars 
cycle i s  approximately 15 years,  t h e  energy require- 

The mission t imes associated with these veloc- t r a n s f e r  when Mars is  near t he  nodal point and a l s o  
Maximum energy missions occur f o r  i t y  requirements vary s l i g h t l y  with t h e  launch 

year. 
ments for  t h e  sho r t  t r i p s  general ly  occur f o r  m i s -  
s ion times of 400 t o  500 Earth days. 
times, of t h e  order  of 900 t o  1,000 days, require  ments a re  cyc l i c  i n  nature.  

40,000 fps, depending on t h e  mission mode assumed. 
Earth en t ry  v e l o c i t i e s  were found t o  vary from 
about 46,000 f p s  t o  D,OOO fps f o r  t he  short  t r i p s .  
For t h e  long tr ips,  r een t ry  v e l o c i t i e s  as low as 
58,000 fps  a r e  a t t a inab le .  

Minimum t o t a l  propulsive veloci ty  require- 

Long t r i p  

minimum propulsive v e l o c i t i e s  of 20,000 t o  2 
It is the  purpose of t h i s  paper t o  present a 

survey of t he  energy requirements of  t h e  manned Mars 
mission and t o  analyze the reentry f l i g h t  mechanics 
on r e tu rn  t o  the  Ea r th ' s  atmosphere. 
ve loc i t i e s  are discussed but t he  f l i g h t  mechanics 
associated with entry i n t o  the  Martian atmosphere 
were not considered. Several  current s tudies  of 
t h i s  problem f o r  a va r i e ty  of assumed Martian atmos- 

Mars a r r i v a l  

Since a survey of reentry vehicle  system 
weights indicated t h a t  atmospheric braking is far 
superior  t o  rocket braking, an analysis  w a s  con- pheres a r e  I n  progress elsewhere. 
ducted t o  invest igate  the  f l i g h t  mechanics and 
stagnation point heating associated with Earth The r e s u l t s  of t he  Early Manned Interplanetary 
entry at these high speeds. Corridor widths much Mission s tudies ,  t h e  Manned Mars Landing and Return 
smaller than those f o r  the  Apollo mission must be Mission s tudies ,  and t h e  Manned Planetary Mission 
accepted i f  a p i t ch  modulation capab i l i t y  i s  not Technology Conference as well  as those of other 
avai lable .  Vehicles capable of t he  p i t c h  modula- mission studiesl-10 were included i n  the  present 
t i o n  maneuver for peak g reduction are shown t o  l i t e r a t u r e  survey. These s tudies  consider both 
require  s ign i f i can t ly  lower LID than vehicles chemical and nuclear propulsion systems for launches 
capable of t h e  ro l l - con t ro l  maneuver only. 
lower L/D r e s u l t s  i n  a reduction in  t h e  comet- Earth-Mars cycle .  ~n t h i s  paper, the primary empha- 
t i v e  and r ad ia t ive  stagnation point heating rates 
and loads encountered during r een t ry .  
longi tudinal  ranging capab i l i t y  appears t o  be avai l -  
able  t o  both the  modulated and m o d u l a t e d  en t ry  
vehicles.  no p a r t i c u l a r  vehicle was investigated.  A t  t h i s  

This i n  t he  1968 t o  1984 period, which covers t he  e n t i r e  

s is  i s  placed on s tudies  of t h e  short  t r i p  mission 
i n i t i a t e d  from a near Earth o r b i t .  Adequate 

In t he  study of Earth en t ry  f l i g h t  mechanics 

ea r ly  s tage it appears more reasonable t o  concen- 
trate on defining the  bas i c  reentry vehicle char- Introduction 
o c t e r i s t i c s ,  t h a t  i s ,  t he  range of vehicle lift- 
drag r a t i o  which w i l l  be required f o r  a safe  entry 
as wel l  as the  desired atmospheric maneuvers. A 
preliminary assessment of t he  heating problem is 
given in terms of t h e  stagnation point heating 
loads, 

A t  t he  Present time we a re  in t he  ear ly  Plan- 
ning s tage of manned f l i g h t  t o  another Planet,  t he  
planet  Mars. The Mars landing mission i s  t h e  
e a s i e s t  of a l l  planetary landing missions and Per- 
haps t h e  most important s ince Mars i s  more s imilar  LJ 

Aerospace Engineer, Mission Analysis Group, * 

fRlrcrlprr?b- 1 Aero-Physics Division. 



. .  Mars Mission Charac-k- 

Mission Prof i le  

The manned Mars mission may be accomplished by 
any of severa.1 modes of operation. The concept pre- 
dominantly considered i n  the  s tud ies  which were sur- 

mode of operation i s  the  only one considered i n  t h i s  
paper, and cons is t s  of at most four dominant impul- 
s ive  per iods:  
decelerat ion in to  a Mars c i r cu la r  parking o r b i t ;  
launch fsom t h e  Mars o rb i t ;  and decelerat ion in to  a 
near Earth c i r c u l a r  parking o r b i t .  Any Mars landing 
mission i s  assumed t o  tske place from Mars o r b i t  and 
thus  does not a f f e c t  the  ve loc i ty  requirements of 
the  main o r b i t a l  vehicle .  

'i2 veyed i s  the  Mars o r b i t a l  rendezvous mode. This 

launch from a near Earth o r b i t j  

True minimurn energy missions involve the  so- 
ca l led  Hohmann tr ,ansfer e l l i p s e  shown i n  F ig .  l . 
I n  t h i s  case the  per ihel ion of t h e  t r a n s f e r  e l l i p s e  
occups at the  Earth and the  aphelion at  Mars. 
he l iocent r ic  angles of 1%' must be t raversed  on 
both the  outbound and inbound legs of the  mission. 
In  order for t he  two planets  t o  be i n  the  cor rec t  
pos i t ion  f o r  i n i t i a t i o n  of t he  re turn  t r a j ec to ry ,  
t he  space vehicle  must remain in  the  v i c i n i t y  of 
Mars f o r  450 Earth days. 
times of 900 t o  1,000 Earth days a re  required for 
the  minimm energy mission. This may not be des i r -  
able  from l i f e  support system and r e l i a b i l i t y  con- 
s idera t ions  as well as consideration of psychologi-, 
Cal f ac to r s  a f f ec t ing  the  crew. 
emphasis at the present time is  being placed on the  
"short t r i p "  mission shown i n  Fig.  2. 

Thus, 

Therefore, t o t a l  mission 

Thus the primary 

This reduction i n  t o t a l  mission time t o  400 t o  
500 days is accomplished by allowing one leg  of the  
m i s s i o n  t o  pass ins ide  O f  the  Ea r th ' s  o r b i t .  
Indeed, the  space vehicle  may pass within 1/2 a. u. 
o r  l e s s  of the  Sun f o r  some missions. In  general, 
i n  order t o  optimize the  e n e r a  requirements, t he  
inbound leg  of t he  mission i s  the  short  l e g  of t he  
m i s s i o n .  
must be accelerated t o  the  higher ve loc i t i e s  asso- 
c ia ted  with t r a j e c t o r i e s  passing ins ide  the  Ear th ' s  
o r b i t .  

L/ 

This i s  due t o  the  lower weights which 

Of course the  pena l t i e s  associated with t h e  
short  t r i p  are evidenced i n  increased propulsive 
energy requiremerrts. 
c l e s  at  Earth and gives  rise t o  many novel mission 
concepts such as convoys of vehicles ,  supply vehi- 
c l e s  preceding the  manned vehicles, and hyperbolic 
rendezvous and crew t r ans fe r  t o  a reentry vehicle  on 
Earth re turn .  

Velocity Requirements 

This necess i ta tes  l a rge r  vehi- 

It is  necessary t o  define the  propulsive veloc- 
i t y  increments required t o  carry out t he  mission i n  
order  t o  determine the  e f f e c t s  of launch year and 
t r i p  time on t h e  mission energy requirements. 
and Z o l a l  invest igated the  1970-71 and 1979-80 m i s -  
s ions,  corresponding t o  the  bes t  and worst years 
f o r  a Mars mission i n  t h a t  cycle. 
s ive  ve loc i ty  increments f o r  $he i r  optimized m i s -  
s ions are shown i n  F ig .  3 .  The curves shown are  
f o r  th ree  types of missions i n i t i a t e d  from a circu-  
lar o r b i t  about t he  Earth. These are: a l l  propul- 
s ive  missions; Earth atmospheric braking missionsj 
and Earth and Mars atmospheric braking missions. 
The f irst  c l a s s  of mission Uses propulsive braking 
a t  Earth and Mars and therefore  requires  no advance 

Knipp 

The t o t a l  propul- 
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i n  reent ry  veh!cle technology beyond Mercury or  
Gemini vehicles .  Use of t he  second and t h i r d  
c lasses  of missions requi.res s ign i f i can t  advances 
i n  reentry vehicle  technology beyond t h a t  of Apo1.lo. 
As shown in  Fig.  3 ,  there  a re  two d i s t i n c t  m i n i -  
mum energy points  f o r  each mission which are sepa- 
ra ted  by a region of excessively high-energy 
requirements. The "long t r i p "  minimm occurs at  
about an 850-day mission f o r  a li0-day s t a y  a t  Mars. 
True minimm energy requirements a re  obtained for 
a hp-day  s t a y  at Mars and a t o t a l  mission time of 
about 950 days as indicated by the  near Hohmann 
t r ans fe r  points .  The short  t r i p  minimum energy 
missions occur at t r i p  times of about 400 t o  
500 days dependhe, on t h e  year  and type of mission. 

The use of atmospheric braking y ie lds  grea t  
savings i n  propulsion ve loc i ty  requirements a t  t he  
expense, however, of increased heat-shield weights. 
For instance, s decrease i n  propulsive ve loc i ty  
requirement f r o m  63,000 fps  t o  36,500 fps is  
obtained by using atmospheric braking on Earth 
r e tu rn  f o r  the  1970-71 mission. 
vehicle  would en te r  t he  Martian atmosphere at  r e l a -  
t i v e l y  l o w  ve loc i t i e s ,  a smaller addi t iona l  saving 
(about 10,000 fps )  i s  ava i lab le  by using atmospheric 
braking at  M a r s  as w e l l  8s at Earth.  

Since the  space 

The 1979-80 mission is  shown t o  require  much 
higher propulsive ve loc i t i e s  than the  1970-71 m i s -  
s ion s ince the  dis tance and plane angle change i s  
a maximm at  t h a t  time. 
mission, t h i s  difference i n  ve loc i ty  requirement i s  
some 20,000 fps .  
g rea t ly  reduced however, i f  atmospheric braking i s  
u t i l i z e d  3n Earth re turn .  

For the  al l -propuls ive 

The e f f e c t  of launch year i s  

A s ign i f i can t  penal ty  i n  propulsive ve loc i ty  
requirement i s  associated with going t o  shorter 
t r i p  times from e i t h e r  of the  minimm poin ts .  
Therefore, early manned Mars missions w i l l  probably 
be r e s t r i c t e d  t o  t o t a l  mission times of e i t h e r  400 
t o  500 days o r  9 0  t o  1,000 days. 

The r e s u l t s . o f  Fig. 3 a re  presented for  s t a y  
times at  Mars of 40 aSys and 450 days only. 
e f f e c t  of t he  s t ay  time at  Mars d i f f e r s  for the 
short  and long t r i p s .  For shor t  t r i p s  the  propul- 
s ive  ve loc i ty  requirement general ly  increases  with 
increasing s t ay  time. For long t r i p s ,  a 300- t o  
450-day s t a y  time r e s u l t s  i n  minimum veloc i ty  
requirements. 

The 

Having considered the  e f f e c t s  of mission or 
t r i p  time on the  propulsive ve loc i ty  requirements, 
it is  des i rab le  t o  look more c lose ly  at t h e  e f f e c t s  
of launch year.  The r e s u l t s  of t he  l i t e r a t u r e  sur- 
veyl- lo  are presented i n  Fig. 4 f o r  launch years 
from 1967 t o  1986. 
c i f i c  mission which has been optimized t o  some 
exten t .  
at Earth and at Mars reduces the  e f f e c t s  of launch 
year s ign i f i can t ly  as wel l  as s h i f t s  t he  maxima and 
minima, towards the  e a r l i e r  launch years .  For the  
al l -propuls ive mode, t he  ve loc i ty  requirement var ies  
from about 64,000 f p s  f o r  t he  best  launch year  t o  
about 95,000 f p s  for t h e  worst. 
pheric braking at  Earth r e s u l t s  in  a var ia t ion  i n  
ve loc i ty  requirement with launch year by about 
11,000 f p s .  
t o  about 8,000 fps ,  is  afforded by u t i l i z i n g  atmos- 
pheric  'braking at  both Earth and Mars. 

Each symbol represents  a spe- 

Rote t h a t  t he  use of atmospheric braking 

The use of atmos- 

A fu r the r  reduction i n  t h i s  var ia t ion  

,wcLrn-- 'L 



A s i e n i f i c a n t  point indicated by t h i s  figure is  
t h a t  if t h e  Manned Mars Mission i s  funded and a 
launch date  i n  the  mid 1970's selected,  t he  mission 
must be designed on the  basis of t h e  maximm require- 
ments of t h e  1979-80 period t o  allow f o r  any sched- 
u l e  slippage. If  t h i s  is not done t h e  mission might 
have t o  be canceled u n t i l  7 years later.  However, 
if the  e a r l y  o r  mid 1980's were chosen as t h e  launch 
period, t he  mission could be based on t h e  veloci ty  
requirements f o r  t h a t  p a r t i c u l a r  launch period. For 
s eve ra l  years t h e r e a f t e r  t h e  mission could be car- 
r i e d  out with a lower propuls ive 'veloci ty  require- 
ment. Therefore, it may be desirable  t o  set our 
s igh t s  on a 1984 mission r a the r  than a 1976 mission. 

F igs .  3 and 4 indicate  a s ign i f i can t  reduc- 
t i o n  i n  propulsion requirements i f  atmospheric 
braking i s  used on Earth r e tu rn .  This, of course, 
requires  t h a t  t h e  reentry vehicle be capable of 
e n t r y  i n t o  t h e  Ea r th ' s  atmosphere at hyperbolic 
v e l o c i t i e s .  As i s  t o  be expected, both mission 
time and launch period have a considerable effect  
on t h e  Earth en t ry  ve loc i t i e s .  Fig.  5 presents 
t he  e f f e c t  of t r i p  time on the  Earth and Mars en t ry  
ve loc i t i e s  for t he  1970-71 and 1979-80 missions as 
calculated by Knipp and 2 o l a . l  
sented a re  for a 40-day stay at  M a r s  and minimized 
t o t a l  propulsive ve loc i ty  requirements. Relat ively 
low en t ry  v e l o c i t i e s  a re  obtained for t he  long tr ips 
where atmospheric braking is  used at both Earth and 
Mars. Thus, l i t t l e  o r  no increase i n  reentry vehi- 
c l e  technolow beyond t h a t  f o r  Apollo would be 
required f o r  these missions. For t h e  short  t r i p s ,  
our prime a r e a  of i n t e r e s t ,  t he  Earth en t ry  veloc- 
i t i e s  vary from a minimum of 46,000 fps for t he  
1970-71 mission t o  a minimum of 63,000 fps f o r  the 
1979-80 mission assuming atmospheric braking at  both 
Earth and Mars. If the propulsive braking mode i s  
used a t  Mars, these  entry v e l o c i t i e s  increase t o  
1t8,5OO i p s  and 67,500 f ps ,  respectively.  This 
increase i s  due t o  the  optimization process by 
which t h e  minimm t o t a l  propulsive ve loc i ty  require- 
ments are defined. 

The r e s u l t s  pre- 

A comparison of Figs .  3 and 5 demonstrates 
t h a t  t he  mission times associated with minimum pro- 
pulsive veloci ty  requirements do not coincide 4 t h  
e i t h e r  minimum Earth o r  Mars entry v e l o c i t i e s .  
Since minimwn propulsive veloci ty  i s  an optimal m i s -  
s ion objective,  t he  short  t r i p  mission time must be 
between 400 and 500 days. Although the Earth en t ry  
veloci,ties a r e  only s l i g h t l y  increased, t he  Mars 
entry v e l o c i t i e s  may be increased considerably by 
t h i s  r e s t r i c t i o n .  Mars en t ry  v e l o c i t i e s  of 
19,500 fps t o  36,000 fps must therefore  be con- 
sidered i f  atmospheric braking at Mars i s  t o  be a 
mission requirement. These v e l o c i t i e s  do not appear 
t o  be overly severe when compared t o  the  Earth entry 
s i t u a t i o n .  However, a s  pointed out by many inves- 
t i g a t o r s ,  t he  presence of a large percentage of 
carbon dioxide i n  the  Martian atmosphere r e s u l t s  i n  
high r ad ia t ive  heating at  moderate en t ry  ve loc i t i e s .  
This i s  primarily due t o  the  formation of cyanogen 
i n  the  hot gas cap. Before any specif ic  en t ry  vehi- 
c l e  concept for entry i n t o  the  Mars atmosphere i s  
possible a much more exact de f in i t i on  of t h e  prop- 
e r t i e s  of t h e  Martian atmosphere w i l l  be required. 

A more de f in i t i ve  idea of t h e  maximum Earth 
entry ve loc i t i e s  with which we must b e  concerned i s  
presented i n  F ig .  6 for  the short  t r i p  c l a s s  of 
mission. 
t he  1970-71 mission and maximm v e l o c i t i e s  occur 
f o r  t he  1978-79 launching. 

Minimum Earth entry v e l o c i t i e s  occur for  

These mission s tudies  

indicate  t h a t  en t ry  ve loc i t i e s  as high as 73,ObO fps 
must be considered. 
or Hohmann t r a j e c t o r i e s  (=37,WO fps ) ,  a r e  not 
shown. Based on t h i s  f i gu re ,  an entry veloci ty  
range of 37,000 fps  t o  75,000 fps  was chosen t o  be 
s tudied i n  the  r een t ry  f l i g b t  mechanics sect ion of 
t h i s  paper i n  order t o  include a l l  reasonable manned- 
Mars missions. 

Vehicle Weight Requirements 

The values for t h e  long t r i p ,  

No survey of t he  manned Mars mission could be 
considered complete without a consideration of the 
vehicle weight requirements f o r  such a mission. 
Both chemical and nuclear propulsion systems have 
been considered i n  many mission s tudies .  E lec t r i c  
propulsion has generally not been considered s ince 
it is believed t o  be only marginal for t he  ea r ly  
Mars mission. 

Due t o  the  many different  ground r u l e s  s e t  up 
by Mars mission invest igators ,  no clear-cut band of 
data may be presented as t o  the  vehicle weights 
required i n  Earth o r b i t  t o  complete the  manned Mars 
mission. A b e t t e r  de f in i t i on  of optimum crew s i z e  
and crew l i f e  support requirements i s  needed, fo r  
instance.  Weight of t he  Earth en t ry  vehicle i s  of 
c r i t i c a l  importance s ince a pound saved here is  
worth from 10 t o  100 pounds on the  o r b i t a l  launch 
vehicle .  

The mission s tudies  surveyed indicate  t h a t  
chemical propulsion systems with seve ra l  mil l ion 
pounds i n  Earth o r b i t  a r e  capable of only the  most 
marginal Mars missions. Reasonable missions a re  
avai lable  for nuclear systems with weights i n  o r b i t  
of about 1 t o  1 .5  mil l ion pounds. For comparable 
missions, t he  chemical system weights may be greater  
than the  nuclear system weights by a f ac to r  of f ive  
or more. 

Reentry Vehicle Weights 

v 

The reduction of t o t a l  mission propulsion 
veloci ty  requirements by the use of atmospheric 
braking, while advantageous, i s  obtained only at  
the  expense of increased reentry vehicle thermal 
protect ion requirements. To r e a l i z e  any reduction 
i n  launch-vehicle weight t he  increased heat-shield 
Weights m u s t  be somewhat less than the  propulsion 
system weights which would otherwise be used. In  
Fig. 7 the  r a t i o  of t he  reentry vehicle weight 
f o r  en t ry  at  escape speed t o  the  reentry vehicle 
weight with the  addi t ional  thermal protect ion 
required f o r  en t ry  at  any higher speed is presented 
i n  terms of Earth entry veloci ty .  
braking were considered, aerodynamic and propulsive. 
The band of r e s u l t s  f o r  t he  vehicles u t i l i z i n g  aero- 
dynamic br&ing were obtained from a survey of t he  
literature.2-11 
composed of vehicles with LID capab i l i t i e s  of 
about 112 t o  1 and r e l a t i v e l y  pointed noses. 
lower region is  composed of low LID bodies (0 t o  
112) with r e l a t i v e l y  blunted noses. 

Two types of 

The upper region of t h e  band is  

The 

For t h e  propulsive braking band, specif ic  
impulses of 300 t o  900 seconds were considered. A 
specif ic  impulse of 300 seconds represents a reason- 
able  value of a s torable  chemical propellant and a 
spec i f i c  impulse of 900 seconds represents a very 
good nuclear system capab i l i t y .  

'd 

Thus, t h e  Use of aerodynamic braking on Earth 
r e tu rn  i s  most advantageous throughout t he  veloci ty  
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range considered. A t  73,000 fps ,  the m a x i m u m  en t ry  
ve loc i ty  which might be  expected, t he  most e f f i c i e n t  
propulsive vehicle must weigh at  l e a s t  t h ree  times 
as much a s  the  most e f f i c i e n t  aerodynamic vehicle.  
This, of course, assumes t h a t  t he  aerodynamic and 
propulsive veh ic l e s  have equivalent weights f o r  

V e n t r y  at  escape speed. 

Since 1 psund saved on the  r een t ry  vehicle can 
he worth from 10 t o  100 pounds' on t h e  o r b i t a l  
launch vehicle,  a weight saving of t he  magnitude 
indicated by Fig. 7 i s  qu i t e  s ign i f i can t .  Atmos- 
pheric  braking on Earth r e tu rn  therefore  appears t o  
he a bas i c  requirement of t he  manned Mars mission. 
However, it i s  obvious from the  spread of t he  da t a  
t h a t  much fu r the r  work i s  necessary i n  the  a rea  of 
reentry vehicle  design. 

Reentry F l igh t  Mechanics 

Reentry Maneuvers 

It i s  the  purpose of t h i s  scction of t h e  paper 
t o  define t h e  reentry f l i g h t  mechanics and stagna- 
t i o n  point heat loads for e n t r y  i n t o  the  atmosphere 
on Earth r e tu rn  from a manned Mars mission. The 
maneuvers considered here a r e  shown i n  Fig. 8. For 
m a x i m u m  ranges and m a x i m u m  heating the  vehicle i s  
considered t o  f l y  a pos i t i ve  LID t r a j e c t o r y  from 
entry t o  pul lout .  A t  t h a t  point,  negative l i f t  i s  
appl ied by t h e  ro l l - con t ro l  mode t o  maintain con- 
s t a n t  a l t i t u d e  u n t i l  su f f i c i en t  l i f t  can no longer 
be  generated t o  maintain t h a t  a l t i t u d e .  An equi l ib-  
rium g l ide  i s  then flown t o  impact. The minimum 
range maneuver i s  a constant g, rol l -control led 
maneuver i n i t i a t e d  at  the maximum g point  j u s t  
p r i o r  t o  pul lout .  

W 
Two bas i c  reentry modes were considered: one 

requir ing a vehicle  capable of r o l l  angle modula- 
t i o n  only and t h e  other  requir ing a vehicle  capable 
of both r o l l  angle modulation and p i t c h  angle modu- 
l a t i o n .  The p i t c h  modulation technique i s  used only 
f o r  peak g a l l e v i a t i o n  t o  achieve increased 
reentry corr idor  width capab i l i t y  a s  suggested by 
Becker.12 

T h i s  technique, when i n i t i a t e d  a t  high en t ry  
ve loc i t i e s ,  usual ly  required a pul lup t o  a higher 
a l t i t u d e  as shown by the  lower sketch of Fig. 8. 
I n  tkis case t h e  vehicle angle of a t t a c k  i s  modu- 
l a t e d  towards that f o r  zero l i f t  u n t i l  peak dynamic 
pressure i s  reached, t he  vehicle then i s  rol led 180° 
and the angle of a t t a c k  increased t o  maintain t h e  
same constant g loading. Negative l i f t  i s  thus 
obtained t o  hold the  vehicle i n  the  atmosphere and 
allow a constant a l t i t u d e  f l i g h t  path t o  be flown 
from the second pul lout .  

I n  the  present analysis ,  t he  Earth i s  assumed 
t o  be spherical  and nonrotating and r een t ry  i s  
i n i t i a t e d  at  an a l t i t u d e  of 400,000 f e e t .  The 
overshoot boundary i s  defined as t h a t  entry at  pos- 
i t i v e  LID f o r  which t h e  vehicle  can j u s t  maintain 
a constant a l t i t u d e  f l i g h t  pa th  at  the  bottom of 
t h e  pullup u t i l i z i n g  i t s  full negative LID capa- 
b i l i t y .  
e n t r y  for which the  m a x i m u m  decelerat ion loads do 
not exceed l2g. 

The undershoot boundary i s  defined as t h a t  

J 

The r e s u l t s  were obtained by machine calcula- 
t i o n  for the  region from en t ry  t o  pul lout  and by  
ana ly t i c  methods from pul lout  t o  landing. 

'Limiting Entry Velocity 

It i s  wel l  known t h a t  an increase i n  r een t ry  
ve loc i ty  r e s u l t s  i n  a. decreased r een t ry  'corridor 
f o r  a spec i f i c  vehicle .  This i s  simply due t o  the  
f a c t  t h a t  t he  vehicle  must d i p  deeper i n t o  the  
atmosphere t o  prevent skipping although high decel-  
e r a t ion  loads are encountered at  higher a+t i tudes.  
For a given vehicle ,  t he  overshoot i n i t i a l .  en t ry  
angle must increase for increased e n t r y  ve loc i ty  
and the undershoot i n i t i a l  e n t r y  angle must decrease 
as i s  indicated by the  sketch i n  Fig.  9. Since the  
boundaries approach each other ,  t h e  overshoot bound- 
a ry  decelerat ion loads must increase with increasing 
en t ry  veloci ty .  A s  shown by t h i s  f igure,  these 
decelerat ion loads may he s ign i f i can t ly  reduced by 
increasing the  vehicle LID capab i l i t y .  However, 
even a vehicle  with i n f i n i t e  LID capab i l i t y  would 
have a 7.5g m a x i m u m  load a t  t h e  overshoot boundary 
f o r  en t ry  a t  75,000 fps ,  t he  m a x i m u m  considered 
here for t he  manned Mars mission. Therefore, 
high g loads a r e  a bas i c  requirement for  the  
atmospheric braking mission mode. The e f f e c t s  of 
prolonged weiehtlessness on the  crew's tolerance t o  
decelerat ion loadings must be defined and, if nec- 
essary,  a centr i fuge included i n  the mission module 
t o  maintain crew effect iveness  i n  g tolerance.  
If the  undershoot boundary i s  based on man's t o l e r -  
ance t o  hieh decelerat ion loadings, it becomes 
apparent t h a t  t h e  overshoot boundary m a x i m u m  decel-  
e r a t ion  loads may exceed the  chosen l i m i t s . '  Thus, 
some e n t r y  ve loc i ty  e x i s t s  f o r  which t h e  overshoot 
and undershoot boundaries coincide. This i s  t h e  
point of zero corr idor  width and i s  defined as t h e  
l i m i t i n g  e n t r y  velocity.  

The l imi t ing  en t ry  v e l o c i t i e s  associated with 
var ious l e v e l s  of decelerat ion loading a r e  pre- 
sented i n  Fig.  10 i n  terms of vehicle LID capa- 
b i l i t y .  B a l l i s t i c  vehicles  a r e  completely inade- 
quate f o r  en t ry  a t  v e l o c i t i e s  .much i n  excess of 
40,000 fps .  Even a vehicle  with an LID capab i l i t y  
of 1.12 would exceed 1.28 f o r  e n t r y  at  speeds i n  
excess of 69,500 fps.  
bas i s .  of 'the 1979-80 mission would require an 
capab i l i t y  of about 0.7 as, the  minimum possible  
valu'e f o r  a 12g undershoot boundary and zero c o r r i -  
dor width. To achieve any s ign i f i can t  corr idor  
width, a much higher value of LID would he 
required. Thus, vehicles  capable of r o l l  control  
only, which en te r  t he  atmosphere i n i t i a l l y  with 
pos i t i ve  lift, may require  LID c a p a b i l i t i e s  far 
i n  excess of 0.7. 

Corridor Width 

A vehicle  designed on the  
LID 

On the  b a s i s  of guidance and control  consider- 
a t ions  an Earth en t ry  co r r ido r  width of about 
10 miles  i s  required on r e tu rn  from the  manned Mars 
mission. It i s  of i n t e r e s t ,  however, t o  consider 
t he  general  e f f ec t  of en t ry  mode and vehicle  LID 
on the  corr idor  width c a p a b i l i t y  of en t ry  vehicles .  
A s  shown i n  Fig. 11 qu i t e  sophis t icated vehicles  
may he required t o  achieve s ign i f i can t  corr idor  
widths based on a 126 undershoot boundary unless  
p i t c h  modulation i s  used f o r  peak g reduction. 
With p i t c h  modulation capab i l i t y  a reentry vehicle  
with LID < 1 i s  capable of achieving a 10-mile 
corr idor  on r e tu rn  from a Mars mission i n  the worst 
launch period. T h i s ,  compared t o  the nnmodulated 
case requir ing 
modulation capab i l i t y  i s  necessary unless  cor- 
r i d o r  widths of t he  order of 5 miles or  l e s s  may be 
accepted f o r  the present boundary de f in i t i ons .  

LID > J, ind ica t e s  t h a t  a p i t c h  
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Fig. 1 2  gives an ind ica t ion  of t he  LID capa- 
b i l i t y  required for t he  manned Mars mission for sev- 
eral cor r idor  widths. For missions i n  t h e  l o w -  
energy period, 1970-7l ('IE - 45,000 fp), a 10-mile 
cor r idor  i s  ava i lab le  t o  a low LID vehicle with- 
out t he  use of p i t c h  modulation. This requirement 
rap id ly  increases i f  increased corridor widths are 
desired.  

For missions i n  the  1978-79 period 
(VE = 75,000 fps)  p i t c h  modulation i s  required t o  
achieve a 10-mile cor r idor .  Note that t h e  LID 
requirement i s  not high, only about a value of 0.75. 
Also of i n t e r e s t  i s  the  1984 mission. I n  this case 
t h e  r een t ry  ve loc i ty  i s  about 55,000 fps  requiring 
a vehicle LID capab i l i t y  of 0.62, unmodulated, or 
0.31, modulated. Su f f i c i en t ly  wide reent ry  co r r i -  
dors  a re  thus ava i lab le  t o  vehic les  with f a i r l y  low 
LID c a p a b i l i t i e s  for t he  low and middle energy 
Mars missions but  p i t c h  modulation capabi l i ty  i s  
required if  the  mission i s  t o  occur near the high- 
energy period. It i s  rea l ized  of course, t h a t  some 
increase i n  ve loc i ty  and LID requirements i s  nec- 
essary  t o  provide f o r  a reasonable launch window. 

Aerodynamic Heating 

Since the  aerodynamic heating i s  a major f ac to r  
i n  reentry vehic le  design, the r e l a t i v e  heating has 
been analyzed f o r  t he  two reent ry  modes which have 
been examined. For the  purpose of t h i s  paper, it 
was not considered des i rab le  t o  r e s t r i c t  t he  analy- 
s is  t o  any p a r t i c u l a r  reent ry  configuration or heat- 
sh ie ld  material. Thus, a l l  heating comparisons a r e  
based on the  stagnation point heat r a t e s  and loads. 

It i s  well  lmown t h a t  t h e  r ad ia t ive  heating 
r a t e  diminishes more rap id ly  than the  convective 
heating rate along any contour l i n e  moving away 
from t h e  stagnation point.  Therefore the apparent 
dominance of r ad ia t ive  heating obtained here would 
be lessened i f  t he  e n t i r e  body were considered. It 
i s  f e l t  however, that f o r  a preliminary de f in i t i on  
of t h e  heating penalty associated with atmospheric 
braking on Earth re turn  from a manned Mars mission, 
t he  stagnation point heating r a t e s  and heating 
loads should be su f f i c i en t .  I n  the present ana lys i s  
t he  e f f e c t s  of nonequilibrium radia t ion  have been 
neglected. Se i f f , lS  i n  h i s  ana lys i s  of b a l l i s t i c  
en t ry  at  high speeds, ind ica tes  t h a t  t h e  nonequilib- 
rium rad ia t ive  heating i s  small i n  comparison t o  the  
equilibrium rad ia t ive  heating. 

Obviously, max imum stagnation poin t  heating 
rates occur a t  the  undershoot boundary. The maximum 
convective heating r a t e s  are presented i n  Fig. 13 
for both the modulated and unmodulated en t r i e s .  A s  
shown, use of t h e  p i t c h  modulated en t ry  mode r e s u l t s  
i n  l a rge  increases i n  t h e  m a x i m u m  convective heating 
rates f o r  en t ry  at  the  same veloc i ty .  This would 
seem t o  preclude use of t he  p i t c h  modulated en t ry  
maneuver. However, t he  difference i n  LID required 
by t h e  two modes of operation, f o r  t he  same cor r idor  
width, completely changes th i s  conclusion. In f a c t ,  
lower stagnation point convective heating rates are 
obtained for t h e  p i t c h  modulated en t ry  vehicle than 
for t h e  unmodulated en t ry  vehicle with an equiva- 
l e n t  cor r idor  as may be seen from Figs. 12 and 13. 

The m a x i m u m  rad ia t ive  heating rates are shown 
i n  Fig. 1 4  t o  increase much more rap id ly  w i t h  
increas ina  e n t r r  ve loc i tv  than do the  convective 

l a rge  increases i n  t h e  maximum rad ia t ive  heating 
r a t e s ,  depending on the vehicle LID capabi l i ty .  
Comparing the  rad ia t ive  heating r a t e s  i n  terms of 
equivalent corridor widths f o r  t h e  two ent ry  modes 
ind ica tes  that a reduction i n  maxim heating r a t e  
i s  obtained by use of vehicles with p i t ch  modula- 
t i o n  capabi l i ty .  d 

Perhaps more s ign i f i can t  than a comparison of 
t he  heating r a t e s  i s  a comparison of the stagnation 
poin t  t o t a l  heat loads. The convective t o t a l  heat 
loads a re  presented i n  Figs. 15 and 16 for e n t r i e s  
at  the  overshoot and undershoot boundaries. Entry 
at  t h e  undershoot boundary u t i l i z i n g  p i t c h  modula- 
t i o n  r e s u l t s  i n  lower convective heat loads than 
for t he  unmodulated maneuver. This i s  primarily 
due t o  the  f a c t  t h a t  t he  p i t c h  modulated e n t r i e s  
dive deeper i n t o  the  atmosphere and pull out at  sig- 
n i f i c a n t l y  lower a l t i t u d e s  than do the  unmodulated 
en t r i e s .  The convective heating load obtained 
during a constant a l t i t u d e  f l i g h t  i s  proportional t o  
the  inverse of the square root of t he  atmospheric 
density.  Since most of t he  convective heating 
occurs during the constant a l t i t u d e  f l i g h t ,  minimum 
heat loads occur for those e n t r i e s  with the  lowest 
pullout a l t i t u d e s ,  t he  p i t c h  modulated en t ry  cases.  
M a x i m u m  convective heating loads a r e  obtained for 
en t ry  at  the  overshoot boundary where the vehicles 
maneuver at maximum a l t i t u d e s  and minimum atmos- 
pheric dens i t i e s .  Since the p i t c h  modulated 
e n t r i e s  require l e s s  LID and lower a l t i t u d e s ,  
lower maximum convective heating loads a re  obtained 
with t h i s  maneuver f o r  vehicles with a reentry cor- 
r i do r  width of 10 miles a s  shown i n  Fig. 17. The 
r e s u l t s  of t h i s  f igure  demonstrate t he  e f fec t ive-  
ness of vehicles with p i t c h  modulation capab i l i t y  
i n  stagnation poin t  convective heat load reduction. 
I n  addition, increasing vehicle LID capabi l i ty  is'.J 
generally a t ta ined  only at  the expense of exposing 
l a rge r  surface a reas  t o  high heating r a t e s  and 
loads. Thus, a l l  heating comparisons based on the 
stagnatioa point r e s u l t s  should be conservative 
from the  standpoint of demonstrating the e f fec t ive-  
ness of the p i t ch  modulation maneuver. 

For a given value of LID, t he  equilibrium 
rad ia t ive  stagnation point heat loads presented i n  
Figs. 18 and 19 indica te  a somewhat d i f f e ren t  
r e s u l t  than that obtained f o r  convective heating 
loads. That is ,  m a x i m  rad ia t ive  heating occurs 
a t  t h e  undershoot boundary r a the r  than at  the  over- 
shoot boundary. The use of p i t c h  modulation 
results i n  l a rge  increases i n  t he  undershoot heat 
load, f o r  a given en t ry  ve loc i ty .  Radiative 
heating i s  much more strongly dependent on the  
atmospheric dens i ty  and en t ry  ve loc i ty  than i s  con- 
vective heating. Also, t he  rad ia t ive  beating i s  
d i r e c t l y  proportional t o  the  density f o r  the con- 
s t a n t  a l t i t u d e  maneuver. Thus, en t ry  a t  the under- 
shoot boundary with i t s  lower pullout a l t i t u d e s  
r e s u l t s  i n  g rea t e r  rad ia t ive  heating loads. 

A comparison of t h e  unmodulated and modulated 
en t ry  vehicles on t h e  b a s i s  of equal cor r idor  
widths of 10 miles i n  terms of maximum undershoot 
r ad ia t ive  heating i s  indicated i n  Fig. 20. The 
r a t i o  of t h e  modulated heat loads t o  t h e  unmodu- 
l a t e d  heat loads would be about the same as for the 
convective heating loads. I n  t h e  rad ia t ive  heating 
case, the stagnation point heating loads may not be 
as conservative as i n  the  case of convective 
heating but  should s t i l l  be va l id .  

f4Twal-5 rates. The use"of pitch"modu1ation may r e s u l t  i n  



. .  
It has been demonstrated <,hat vehicles capable 

of the p i t c h  modulation technique a re  advantageous 
i n  terms of reduction of both convective and radia- 
t i v e  stagnation point heating r a t e s  and heating 
loads. Also, this maneuver i s  required only i n  t he  
region of t he  undershoot boundary and would not 

r i do r  en t ry  condition. Thus, it seems reasonable 
t o  consider t h i s  maneuver as a des i rab le  fea ture  
f o r  Earth en t ry  vehicle systems although fu r the r  
study i s  necessary i n  the  a rea  of t o t a l  body heat 
loads and thermal protection system requirements for 
t h i s  type of maneuver before any d e f i n i t e  conclu- 
sions may he drawn. 

F ina l ly ,  it appears t h a t  means of reducing the 

W necessar i ly  be required f o r  t he  nominal o r  midcor- 

high heating r a t e s  and loads occurring at hyperbolic 
en t ry  v e l o c i t i e s  need t o  be studied. Combined aero- 
dynamic and propulsive braking may o f fe r  some advan- 
t ages  although Yoshikawa and Wick14 indica te  t h a t  
vehicle shape optimization and ab la t ion  mater ia l  
development may be a more e f f i c i e n t  method. 

Optimuni Nose Radius 

It i s  a simple matter t o  define an optimum 
vehicle nose radius based on stagnation point 
heating loads  since the  convective t o t a l  heat load 
i s  r e l a t ed  t o  the  vehicle nose radius by the  propor- 

t i o n a l i t y  Qc a and the  r ad ia t ive  heat load by 

Qr a %. 
radius for which minimum t o t a l  heat loads  are 
obtained. 
t o r y  i s  independent of t he  nose radius of t he  
reent ry  vehicle. The sum of the undershoot boundary 
rad ia t ive  heating loads and t h e  overshoot boundary 
convective heating loads was used t o  optimize the  
reent ry  vehicle nose radius for vehicles capable of 
a 10-mile reent ry  cor r idor .  
r a d i i  are presented i n  f igu re  21. 
ment with t h e  work of Se i f f lS  and a l s o  Bobbitt.lT 
Radiative heating i s  shown t o  become t h e  dominant 
heating @e at  en t ry  v e l o c i t i e s  i n  excess of about 
50,000 fps .  
optimum nose radius i s  only s l i g h t l y  d i f f e ren t  for 
vehicles with p i t c h  modulation capabi l i ty .  

& 
The optimum nose radius i s  then the  nose 

It i s  assumed tbat the  reent ry  t r a j e c -  

w 

These optimum nose 
This i s  i n  agree- 

It i s  i n t e r e s t i n g  t o  note t h a t  t he  

The t o t a l  stagnation point heat loads associ-  
ated with the  optimum nose r a d i i  of Fig. 21 are pre- 
sented i n  Fig. 22 for vehicles with a 10-mile en t ry  
corridor capabi l i ty .  
reen t ry  vehicles capable of t he  p i t c h  modulation 
technique over vehicles capable of only r o l l  angle 
modulation i s  obvious from t h i s  f igure .  A t  
68,000 fps ,  t he  highest  ve loc i ty  for which the  
unmodulated vehicle i s  capable of providing a 
10-mile corridor,  t h e  modulated vehicle heat load 
i s  only one-fifth that of the m o d u l a t e d  vehicle.  

Range C a p b i l i t x  

The marked super ior i ty  of 

The ranging c a p a b i l i t i e s  of both the modulated 
and unmodulated vehic les  have been evaluated since 
cont ro l  of the landing poin t  i s  a des i rab le  char- 
a c t e r i s t i c  for any reent ry  vehicle system. The 
e f f i c i ency  of  the vehicle insofar as range con- 

sophis t ica t ion  of the system. The a b i l i t y  of the 
reent ry  vehicle t o  f l y  d i f f i c u l t  maneuvers involving 
exact cont ro l  of t h e  vehicle and perhaps both roll 

J t r o l  i s  concerned i s  strongly dependent on t h e  

discussions thus  f a r  have been based on the  require- 
ment of safe  en t ry  only, r rgard less  of landing c i t e .  
It i s  des i rab le  t o  have a reent ry  vehicle which i s  
at least capable of zero range overlap. That is, 
t he  minimum range t raversed  on t h e  overshoot tra- 
jec tory  i s  equal t o  t h e  maximum range traversed on 
the undershoot t r a j ec to ry .  Then, i f  t he  vehicle 
approaches the  atmosphere i n  t h e  cor rec t  plane and 
at the  cor rec t  time, a landing at t h e  desired point 
may be effected.  

The e f f ec t s  of en t ry  ve loc i ty  and vehicle LID 
capab i l i t y  on t h e  longi tudina l  range overlap are 
presented i n  Fig. 23 f o r  t he  unmodulated and modu- 
l a t e d  en t ry  techniques. Tae dashed l i n e s  ind ica te  
the  range overlap capab i l i t y  of t h e  minimum vehicle 
with a 10-mile reent ry  cor r idor  capabi l i ty .  Range 
overlap increases  w i t h  en t ry  ve loc i ty  and s i g n i f i -  
cant values ace obtained f o r  t h e  unmodulated case. 
Note the unusual result f o r  modulated en t ry  of 
decreasing range overlap with increasing LID capa- 
b i l i t y .  These results are for vehic les  requi r ing  
all t h e i r  LID capab i l i t y  for use i n  peak g 
reduction. Since L/D < 1 i s  a l l  t h a t  i s  required 
t o  achieve safe  en t ry  f o r  this maneuver, t he  high 
L/D r e s u l t s  may b e  neglected. Also, pos i t i ve  
range overlap occurs only a t  t h e  higher en t ry  veloc- 
i t i e s  and i s  qu i t e  small. Aowever, for en t ry  veloc- 
i t i es  i n  excess of 45,000 f p s  the  p i t c h  modulation 
en t ry  maneuver i s  at  l e a s t  acceptable from the  
range standpoint. It should be pointed out,  however, 
t h a t  addi t iona l  range overlap capab i l i t y  may be 
expected by providing the  p i t c h  modulated en t ry  
vehicle with a slight excess of LID. 

Lateral range c a p a b i l i t i e s  are not considered 
here since t h e  lateral range capab i l i t y  of these  
vehic les  would probably be g rea t e r  than the  longi- 
t ud ina l  overlap capabi l i ty .  

Concluding Remarks 

The mission s tud ie s  surveyed i n  t h i s  paper have 
shown t h a t  t h e  propulsive ve loc i ty  requirements f o r  
the manned Mars mission a r e  strongly dependent on 
mission time and launch year. The short  t r i p  mis- 
sions,  des i rab le  from the standpoint of l i fe -suppor t  
system and r e l i a b i l i t y  requirements, requi re  about 
400 t o  500 days t r ip  t i m e .  The Earth en t ry  veloc- 
i t i e s  associated with these  missions vary from 
45,000 fps t o  75,000 fps depending on t h e  launch 
period. A survey of r een t ry  vehicle system weights 
indicated a s igni f icant  weight saving by u t i l i z i n g  
aerodynamic braking r a the r  than propulsive braking 
a t  Earth. 

For the range of Earth en t ry  v e l o c i t i e s  con- 
sidered, an ana lys i s  was performed t o  evaluate t h e  
minimum reent ry  vehicle L/D requirements. A rea- 
sonable reent ry  cor r idor  width of l@ miles w a s  
chosen t o  define Vie minimum LID requirement. It 
was shown that safe e n t r y  a t  v e l o c i t i e s  g rea t e r  
than about 68,000 f p s  was ava i lab le  only t o  vehi- 
c l e s  with an LID capab i l i t y  i n  excess of th ree  
f o r  vehic les  capable of r o l l  cont ro l  only. The use 
of t he  p i t c h  modulation technique f o r  peak g 
a l l e v i a t i o n  and reent ry  cor r idor  width increase was 
shorn t o  require a m a x i m  vehicle LID of 0.75 a t  
an en t ry  ve loc i ty  of 75,000 fps. The pitch modula- 
t i o n  maneuver r e su l t ed  i n  lower heat loads than d id  
the unmodulated mneuver f o r  t h e  minimum ent ry  
vehicle.  

PRIrwM- 6 and p i t c h  angle var ia t ion  i s  important. The 



Only small range overlap was ava i lab le  t o  the  
minimum ent ry  vehicle  using p i t ch  modulation. 
ever, zero range overlap occurred at  an en t ry  veloc- 
i t y  of 45,000 f p s ,  ind ica t ing  t h a t  t he  p i t c h  modula- 
t i o n  maneuver i s  acceptable f o r  en t ry  a t  v e l o c i t i e s  
in excess of t h i s  value. 

How- 

On t he  basis of th i s  study it appears t h a t  the  
p i t ch  modulation maneuver is  a des i rab le  maneuver 
f o r  reentry at  the  v e l o c i t i e s  associated with Earth 
re turn  from a short  t r i p  manned Mars mission. This 
maneuver requi res  fu r the r  study, e spec ia l ly  as t o  
the  t o t a l  body heat ing s ince t h i s  study of stagna- 
t i o n  point heat ing gives only a broad indicat ion of 
t he  t o t a l  heat ing p ic ture .  
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