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Convective Heat Transfer within Fibrous Insulation Slabs 

D. K. Josh i  and  S. P. S u k h a t m e ,  B o m b a y  ( Ind ia )  

Abstract. A numerical study of convective heat flow within a 
fibrous insulafing slab is presented. The material is treated as 
an anisotropic porous medium and the variation of  properties 
with temperature is taken into account. Good agreement is 
obtained with available experimental data for the same geo- 
metry. 

Zusammenfassung. Fiir den konvektiven W~irmestrom in einem 
faserf6rmigen Isolierstoff wird eine numerische Berechnung 
angegeben. Der Stoff wird als anisotropes por6ses Medium 
mit temperaturabh/ingigen Stoffwerten angesehen. Die ~berein- 
stimmung mit verfiigbaren Versuchswerten ist gut. 

Nomenclature 

Cp specific heat of the gas at the mean temperature 
Da Darey number = ky/H 2 

Gr* modified Grashof number = gl3ATHky/u 2 
= (Grashof number) x (Darcy number) 

H thickness of the specimen 
P gas pressure 
Pr* modified Prandtl number = ~z Cp/Xx 
Ra* modified Rayleigh number = Gr* Pr* 
Rp ratio of permeabilities = ky/k x 
R k ratio of conductivities = hy/h x 
T absolute temperature of the gas 
T 1 absolute temperature of the hot  face 
T 2 absolute temperature of the cold face 
T m mean temperature of the gas = (T 1 + T2)/2 

k x specific permeability of the porous medium along the 
x-direction 

ky specific permeability of the porous medium along the 
y-direction 

p A T/T m 
q exponent 
r exponent 
u gas velocity along the x-direction 
v gas velocity along the y-direction 

x ,  distance along the x-direction 
y ,  distance along the y-direction 
Ax T temperature difference = T 1 - T 2 
t3 thermal coefficient of expansion of the gas 
tim thermal coefficient of expansion of the gas at the mean 

temperature 
0* T - T m 
0 dimensionless temperature = 0*/Ax T 
X a apparent thermal conductivity of the porous medium 

along the x-direction 
hal local apparent thermal conductivity of the porous 

medium along the x-direction 
hx thermal conductivity of the porous medium along the 

x-direction in the absence of convection 
h e thermal conductivity of the porous medium along the 

y-direction in the absence of convection 
/~ dynamic viscosity of the gas 
#m dynamic viscosity of the gas at the mean temperature 
u kinematic viscosity of the gas 
v m kinematic viscosity of the gas at the mean temperature 
p density of the gas 
Pm density of the gas at the mean temperature 
qJ * stream function at any point 

dimensionless stream function = qJ */(~m/Prn) 

1. Introduct ion 2. L i t e ra tu re  Review 

Like  m a n y  o t h e r  insu la t ions ,  f ib rous  insu la t ing  
mater ia l s  owe the i r  insu la t ing  value to  the  low t h e r m a l  
c o n d u c t i v i t y  of  air. The  h e a t  f low t h r o u g h  such mate -  
rials cons is t s  of  t h e  fo l lowing c o n t r i b u t i o n s :  

i) Convec t ive  hea t  t r ans fe r  t h r o u g h  the  air 
ii) R a d i a t i o n  hea t  t r ans fe r  

iii) C o n d u c t i o n  hea t  t r ans fe r  t h r o u g h  the  solid fibres.  

The  ef fec t iveness  of  the  in su la t ions  lies in t he i r  abi l i ty  
to  suppress  the  c o n t r i b u t i o n  due  to convec t ive  hea t  
t r ans fe r  to  the  m a x i m u m  e x t e n t  possible ,  whi le  at  t he  
same t ime  min imiz ing  t he  c o n t r i b u t i o n s  due  to radia- 
t ion  and  solid c o n d u c t i o n .  

This  pape r  is c o n c e r n e d  w i t h  ca lcula t ing  the  first  
c o n t r i b u t i o n .  The  p r o b l e m  of  ca lcu la t ing  t he  o t h e r  
two c o n t r i b u t i o n s  has  b e e n  ex tens ive ly  dea l t  w i th  else- 
where ,  e. g. r e fe rences  [1]  to  [10].  

2.1 Ana ly t i ca l  Work  

Lo tz  [ 1 1 ] has  p re sen ted  an  a p p r o x i m a t e  analysis  for 
convec t ive  air f low in ver t ica l  glass wool  ba t s  wi th  
e i ther  or  b o t h  of the  ver t ical  faces pe rmeab le .  T h e  
a p p r o x i m a t i o n s  inc lude  the  a s sumpt ions  t h a t  a ce r t a in  
f low p a t t e r n  exists  and  t ha t  a l inear  t e m p e r a t u r e  
d i s t r i bu t ion  exists  w i th in  the  slab inspire  of  the  con-  
vect ive  hea t  flow, In  a s imilar  m a n n e r ,  Wolf  [12]  has  
ana lyzed  a p o r o u s  pa r t i t i on  p e r m i t t i n g  convec t ive  air 
f low f rom the  ho t  to the  cold chambers .  He has  
assumed t h a t  the  f low is n o r m a l  to the  pa r t i t i on ,  t h a t  
the  t e m p e r a t u r e  d i s t r i bu t i on  wi th in  t he  p a r t i t i o n  is 
l inear  and  t h a t  the  t e m p e r a t u r e s  in the  h o t  and  cold 
c h a m b e r s  are cons t an t .  

More  sophis t i ca ted  analyses  are due  to  C h a n  et al. 
[13]  and  Elder  [14]  w h o  have numer i ca l l y  solved the  
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energy and flow differential equations for vertical and 
horizontal isotropic porous slabs with impermeable 
boundaries. However, since these analyses are for iso- 
tropic media, they cannot be successfully used for 
predicting convection in fibrous insulation slabs, which 
are known to be highly anisotropic. HSglund [15] has 
reported that the ratio of resistance to flow in the two 
directions of a fibrous insulation slab could be of the 
order of two. Analysis of convection in an anisotropic 
porous medium is therefore undertaken in this paper. 

2.2. Experimental Investigations 

Several research workers [11, 16-26]  have reported 
experimental results about convective heat transfer in 
horizontal and vertical insulation slabs. Griffiths [21] 
reported a 50 per cent increase in conductivity for a 
60 inches high and 6 inches thick glass fibre mat of 
density 12 lb/ft 3 subjected to a horizontal temperature 
gradient of 50 ~ His results indicated that 
convective heat transfer increased with the L/H ratio. 
Allcut and Ewens [17] tested rock-wool samples in a 
horizontal position with a temperature difference of 
about 33 ~ A 30 per cent increase in conductivity 
was reported with an increase in thickness from 1 to 
41/2 inch. Allcut [16] tested various insulating materials 
at different air pressures. The difference between the 
variation of conductivity (in the absence of radiation) 
of the insulating material with pressure and the varia- 
tion of conductivity of air with pressure was attributed 
to convection. This was reported to be 0 .04-0 .02  
(Btu-inch/ft2-~ for 1 .25-3.2  lb/ft 3 density glass 
wool, i.e. 10 -14  per cent of the corresponding values 
of apparen t conductivity reported. Cammerer [20] 
reported results of tests on 2 0 - 1 0 0  kg/m 3 density glass 
wool panels of up to 1.5 metres height and thicknesses 
of 50, 100 and 200 ram. A considerable variation of 
temperature along the height of the panels was 
measured indicating the presence of convection Currents. 
However it was pointed out that the differences in 
conductivities for different panel heights and thick- 
nesses were of the order of 6 per cent, whereas the 
accuracy of measurement of the conductivity was 
+ 5 per cent. The local apparent thermal conductivity 
as measured at the hot face by a heat flow meter was 
found to be considerably higher near the bot tom in 
comparison with a corresponding value nearer the top. 

Zehendner [26] conducted careful tests on super- 
fine glass wool bats of 8 kg/m 3 density at low temper- 
atures. Data was presented for a specimen of size 
200 x 200 x 40 mm. The specimen was tested hori- 
zontally with heat flow downwards and upwards and 
vertically with heat flow sideways. The difference in 
heat flow between the cases of heat flow upwards or 
sideways and the case of downwards heat flow at any 
particular temperature gradient was ascribed to convec- 
tion. The convection contr ibution was found to be 

inversely proportional to the fourth power of absolute 
temperature and to be significant at temperatures below 
- 50 ~ A maximum value of (Xa/Xx) = 1.75 for a 
specimen mean temperature of - 150 ~ and a hori- 
zontal temperature gradient of 20 ~ was obtained. 
Kostelyne [23] conducted tests in a cylindrical appara- 
tus and observed convection only with fibre diameters 
greater than 19 #. Lotz [11] carried out investigations 
in cold storages and observed that for fibre glass insula- 
tion in the density range of 48 to 64 kg/m 3, the contri- 
but ion due to convection was very small. Wolf [25] 
obtained the temperature variation along the height of 
glass wool bats with both closed and open faces. 

Baker [18] presented data about the effect of pressure 
on the convective contribution. 

3. Analysis 

The analysis is conducted for a slab of height L and 
breadth H closed on all surfaces (Fig. 1). The two 
vertical faces are maintained at constant temperatures 
T 1 and T2, while the horizontal faces are assumed to be 
insulated. Some results have also been obtained by 
assuming the temperature distribution along these 
boundaries to be linear, 

As is usual for porous media, Darcy's law is assumed 
to be valid. Viscous drag and inertia terms are neglected 
as their contribution is likely to be negligible. Since 
the ratio of the temperature difference across the slab 
and the mean temperature is high in many cases, the 
variation of V, P and 13 with temperature is taken into 
account. The properties kx, ky and C o are however 
assumed constant. This is a reasonable assumption. 
The governing equations of continuity,  flow and energy 
may then be written down as follows: 

a 
(p u) + oy,  (p v) = 0 ,  (1) 

lop 

Hot lace Co~d face 
ternperoture temperature 
j r 1  12"~ 

Bo~om 

Fig. 1. Configuration under study 
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bt 8P 
kx u = 8 x ,  ( 2 )  

8P 
ky v = a y ,  g/3p(T - Tm) , (3) 

[p 00" 00" 
U~x,  + pV~y ,  ] Cp 

020 * 00* 0~k x 020 * 00"  0~ky 

= Xx + 0x ,  + x ,  Oy--T by, by,  
(4) 

Eliminating P from Eqs. (2) and (3) and defining stream 
function ~* as 

0qJ* 0r 
p u  = b y .  and p v = -  0 x ,  

the following equations are obtained 

i 0 { 8**  I 1 0 ( a 
k x ~ y ,  \ V a y , ]  + k y ~ x ,  \ Ox,]=g-~x,x, (p/30*)' 

(5) 

0~f* ~0" 0 ~ *  00* Pr* 

b y ,  ~ x ,  0 x ,  0 y ,  

1 [Xx 820"  0Xx ( 0 0 " 1 2  020 * 0kS { 0 0 " / 2  ] 

C--p -'~-X2, +-~-'~ \ ~ X ,  / +~kY 0 - -~ ,  +~- -~  \ ~ Y , /  J' X = 

(6) x = 

The boundary conditions are: Y = 
y =  

A T  
x ,  = 0, if* = 0, 0* = T  1 - T m 2 

A T  
x .  = H. ~* = 0. 0* = T 2 - T m . . . .  �89 

and for y ,  = 0  and y , = L  

00* 
if* = 0  and either ~ = 0  or 

o y ,  

00* A T  
= constant  = - - 

0 x ,  H 

The temperature,  stream function and length are 
made dimensionless by dividing the quantities by A T, 
/~rn and H respectively. The variation of the propert ies 
p,/3, and v for air with temperature can be expressed 
in exponential  form to a fair degree of  accuracy. We 
therefore assume the following functional relation- 
ships. 

p/3 = Pm/3rn and v = Vrn �9 

A T  T 
Further,  introducing p =-T--~-~ we g e t ~  = 1 + p0.  

Eq. (5) can thus be rewrit ten as 

0 2 ~ .  02~ r p  

[ 1 - ( q  - 1) p0] a0 
= Gr* [(1  + p 0 )  q+r+l J ~ x '  (7) 

The solution of this equation is to be compared with 
Zehendner 's  [26] data. The maximum value of p in 
that data works out to be 0.65. For  this value of  p 
the expre~ion  

t - (q - 1) pO 
Gr* (1 + p 0 )  q+r+l 

which we may term as the local Grashof number, has 
a maximum value of 14.5 Gr* at the cold end and a 
minimum value of  0.1275 Gr* at the hot  end provided 
q = r = 2. The corresponding variation of  Xx and Xy 
is much lesser in magnitude and is therefore neglected. 
Thus Eq. (6) reduces to 

( 0 ~ 0 0  0 ~ a 0 )  020 020 
by  Ox ~x by  = ~ x  2 + Rk 8y  ~ " (8) 

The corresponding boundary conditions are 

0, 0=+0 .5 ,  ~O=0 

l, 0 = -0.5, r = 0 

0, (00/Oy)=0 or (00/Ox)= 1, i f = 0  

L/H, (00/0y) = 0  or ( 0 0 / 0 x ) =  1, ~ = 0 .  

The problem thus reduces to solving the coupled partial 
differential Eqs. (7) and (8) subject to the given 
boundary conditions. 

Eq. (7) involves the dimensionless quantities p, q 
and r which decide the extent of  variation of properties.  
With either p = 0 or q = r = 0, the problem reduces to 
the one of constant properties. The other dimension- 
less quantities are Rp and Gr*. Rp is the ratio of 
permeabilities and Gr* is a modified Grashof number, 
the product  of  the conventional Grashof number and 
the dimensionless permeabil i ty called the Darcy number.  
Higher values of Gr* correspond to higher stream func- 
tion values. Eq. (8) involves the dimensionless quanti- 
ties Pr* and R k. Pr* is a modified Prandtl number 
while R k is the ratio of conductivities. From the 
equations, one may infer that a higher value of  Pr* 
would mean a higher convective contr ibut ion for the 
same stream function distribution. Considering this 
along with the earlier conclusion regarding the influ- 
ence of Gr* we can expect Gr* Pr* (= Ra*) to deter- 
mine the convective contr ibut ion to a large extent.  
A higher value of Rp will obviously result in lower 
values of the stream function. 

W~me- und Stofftibertragung 6 (1973) No. 3 
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4. Method of Solution 5. P e r m e a b i l i t y  T e s t s  

The differential equations have been solved by the 
finite difference method, the Peaceman and Rachford 
alternate line and row technique of scanning being 
used. Finite difference equations were written making 
use of  a five point molecule for the stream function 
and for the temperature. 

Initial guesses for the temperature and stream func- 
tion were assumed on the basis of an approximate 
parameter perturbation solution of Eqs. (7) and (8), 
in which the value of p was taken to be zero. Sub- 
stituting 

= ~0 + (Pr*) ~/1 -k (Pr*) 2 if2 + �9 �9 - 

0 = 0 o  +(Pr*)  01 +(Pr* )  2 02 + . .  �9 

in Eqs. (7) and (8) and solving, one gets 

1 
0 0 = 7  - x ,  

16 Gr* H 
01 = - 7r 5 L 

nTry 
oo oo sin m rr x cos L/H 

H 2 H 2 
n 2 - -  m=1,3,5 n=1,3,5 m m 2 + R p n 2 - ~  m 2 + 

L 2 

and 

16 Gr* 
~0 -- - - - - U  - •  

nTry 
~ s i n m n x c ~  L/H 

x ~ 
H 2 m=l,3,s n=1,3,5 m n m2 + n2 Rp L2 

Convergence for higher values of  p was ensured by 
starting the solution with p = 0 and increasing it in 
small steps of 0.02. 

In order to determine the range of values of Gr* 
and Rp for which the Eqs. (7) and (8) were to be 
solved, it was decided to measure the permeabilities of 
some available insulation bats. A simple apparatus was 
therefore constructed for the purpose. It consisted of 
a sheet metal ducting 15.5 cm in diameter, attached to 
the suction side of  a blower. Samples were held in the 
ducting such that air flowed either along the fibre layers 
or across them. Provision was made for measurement 
of pressure drop across the insulation sample and the 
air flow rate. Air velocities were in the range of 5 to 
40 cm/sec. The air temperature was varied from 20 to 
100 ~ and it was found to have no effect on the value 
of permeability. The results are presented in Table 1. 
It can be seen from Table 1 that whereas the values of 
the permeabilities depend strongly on both the fibre 
diameter and the density, the ratio of  the two is more 
strongly influenced by the density than the fibre dia- 
meter. 

6. Resu l t s  and  D i s c u s s i o n  

On the basis of the results of the permeability tests, 
Eqs. (7) and (8) were solved for values of Ra* ranging 
from 5.6 to 179.2 in multiples of 2, Rp from 0.2 to 5 
and (L/H) from 0.5 to 18. Values of R k were chosen 
to be 0.8, 1.0 and 1.2. In all cases, finally the value of 
(Xa/~,x), which is a measure of the convection present, 
was obtained. The effect of variation of properties with 
temperature was studied for a specimen of (L/H) = 5, 
for values of p from 0 to 0.7 and values of Ra* up to 

179.2 both for the linear temperature distribution as 
well as for the insulated boundary condition at the top 
and bottom. Other computations were done for the 
insulated boundary condition only and for p = 0. The 
effect of Prandtl number variation was studied and it 
was found that within the range of 0.5 and 0.35, the 
value of (Xa/Xx) depended on Ra* alone. 

Table 1. Permeabilities of Some Insulation Samples 

Density 
Description of bat (kg/m3) 

Permeability 
x 10 s (cm 2) 

Across Along 
layers layers 

Ratio 

Along layers 

Across layers 

Fine glass wool bat 
(Average fibre dia. ~ 2 ~) 10 0.2 0.45 2.25 

Glass wool bat 12 5.2 13.1 2.52 
(Average fibre dia. 7 ~) 16 3.6 8.5 2.36 

32 1.9 3.6 1.9 

Mineral wool bat 
(Average fibre dia. 5 ~) 65 1.0 2.6 2.6 

Wiirme- und Stoffiibertragung 6 (1973) No. 3 
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Fig. 2. Variation of (Xa/Xx) with Ra*, 
aries insulated 
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top and bottom bound- 

The assumption that viscous drag and inertia force 
terms may be neglected was in fact verified by including 
them and solving a few cases for values of Da (which 
is the pertinent dimensionless parameter) ranging from 
10 -9  to 10 -3. It was found that for values of Da less 
than 10 -4,  the effect of including these terms on the 
value of (Xa/Xx) was less than 0.5 per cent for 
L/H = 6, Gr* = 512, p = 0, Pr* = 0.35, Rp = 2.5 and 
R k = 1.0. Since values of Da greater than 10 - 4  are 
rarely encountered, the assumption regarding viscous 
drag and inertia terms appears reasonable. 

Fig. 2 shows the variation of (Xa/Xx) with Ra* for 
different values of Rp, (L/H) being constant and p = 0. 
It is seen that (~,a/Xx) rises quite slowly initially and 
then quite rapidly. The values of (Xa/Xx) for a particular 
value of Ra* and different values of R o differ consider- 
ably at higher values of Ra*. Within the range of values 
of Ra* and (L/H) studied, no multi-cell formation is 
observed. This corresponds to what has been reported 
by Gill [27]. The stream function distribution shown 
for a particular case in Fig. 6 clarifies this point. 

Fig. 3 shows the variation of (Xa/Xx) against (L/H) 
for different values of Ra* and Rp. It is seen that for 
particular values of Ra* and Re, the value of (Xa/Xx) 
goes through a maximum. Further it is seen that for 
particular values of Ra*, the curves for different values 
of Rp tend to merge after the maximum as (L/H) 
increases. The behaviour observed in Fig. 3 agrees with 
the results reported by Cammerer [20] and indicates 
that the results of Griffiths [21] which have been 
obtained for large values of (L/H) are probably errone- 
ous. 

Fig. 3 also presents a comparison of the present 
results for Rp = 1 with the isotropic analysis of Chan 
et al. [13]. It will be noted that excellent agreement 

3.5 

3.0 

2.5 

I 2.0 

,g 

~.5 

1.2 

1"00 3 6 g 12 15 18 
L/H 

Fig. 3. Variation of (Xa/Xx) with (L/H) for insulated bound- 
aries and p = 0. 
0 represents points read from Chan et al.'s study 

has been obtained, between curve 4e and the points read 
off from the calculations of reference [13]. 

Fig. 4 shows the effect of considering the variation 
of properties. The variation of (Xa/Xx) with Ra* for 
different values of p with both the boundary conditions 
is plotted. It is seen that the linear temperature 
boundary condition results in unequal heat flows at the 
hot and cold faces, for non-zero values of p, the heat 
flow at the hot face being lower than that at the cold 
face. It is also seen that the linear temperature bound- 
ary condition results in considerably smaller values of 
(Xa/Xx) at both the vertical faces as compared with the 
values for the insulated boundary condition. These 
points are further elaborated in Fig. 5, which shows the 
variation of (~ka/~kx) xvith p for the two boundary condi- 
tions at fixed values of Ra*. 

Figs. 6 and 7 show details of the solution obtained 
in a particular case (viz. Ra* = 179.2, L/H = 6, p = 0, 
R k = 1, Rp = 2.5) with the insulated boundary condi- 
tion. Fig. 6 shows the stream function distribution, 
while Fig. 7 shows the variation of temperature close to 
the hot face and of (?tal/X x) along the hot face. 

The stream function distribution can be seen to be 
symmetric about either of the diagonals so that 
~(x ,  y) = ~(1  - x, L / H  - y). This corresponds to 
what has been pointed out by Rubel [28]. This sym- 
metry in distribution of stream function as well as the 
antisymmetry in the distribution of temperature, 

W~me- und Stoffiibertragung 6 (1973) No. 3 
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Fig. 4. Variation of (Xa/hx) with Ra* for different values of p. 
(L/H) = 5, Rp = 2.5 
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Fig. 5. Variation of (ha/Xx) with p for (L/H) = 5, Rp = 2.5 
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Fig. 6. Stream function distribution for Ra* = 179.2, 

(L/H) = 6, p = 0, R k = 1, Rp = 2.5 with insulated boundary 
condition 
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Fig. 7. Variation of temperature along y at x = (H/13) and of 
(Xal/Xx) along y for Ra* = 179.2, (L/H) = 6, p = 0, R k = 1, 
Rp = 2.5 with insulated boundary condition. Dotted line 
represents (Ka/hx) for the same conditions. 

viz. 0 (x, y) = - 0 (1 - x, L /H - y) was m a d e  use of  
in analys ing the  p = 0 case. The  ex i s tence  of  such 
s y m m e t r y  can  be  easily p roved  f rom the  n a t u r e  o f  the  
d i f fe ren t ia l  equa t ions  and  the  b o u n d a r y  cond i t ions .  
S t r eam lines are also seen to be  c rowded  nea r  the  
b o t t o m  bo~tndary of  the  ho t  face. At  th is  p o i n t  the  
u p w a r d  b u o y a n c y  and  t h e r e f o r e  t he  u p w a r d  ve loc i ty  is 
a m a x i m u m .  As a resul t ,  co lder  air rushes  in resu l t ing  

W~me- und Stofffibertragung 6 (1973) No. 3 



D. K. Joshi and S. P. Sukhatme: Convective Heat Transfer within Fibrous Insulation Slabs 189 

2.0 

1.5 

t 
1.2 

1.0 

I I 2 
--CurveNo. Rp Rk Boundaries ky .105 cm 

1 2.5 1.2 Linear 2.5 
--  2 2.5 1.0 Insulated 1.07 

3 1.0 1.0 Insulated 1.0 1 

o Zehendner's data / t  
/ 

_ , 3 2 , 

- -  1 " 

~ -50 -100 
I 

-150 

Fig. 8. Comparison of different solutions with Zehendner's 
data (indicated by circles) for a temperature difference of 
80 ~ Curve numbers 1 and 2 represent variable property 
solutions. Curve 3 represents the constant property solution. 
Property values at mean temperature are used. 

in high temperature gradients and high values of 
(~kal/Xx) in this region (Fig. 7). This corresponds to 
what has been reported by Lotz [1 1] and Cammerer 
[201. 

The only experimental data with which a detailed 
quantitative comparison is possible is that of Zehendner. 
The comparison is made in Figs. 8 and 9. For this 
purpose X x was chosen to be the value of the con- 
ductivity obtained experimentally during the down- 
ward flow of heat at the same mean temperature and 
the same temperature gradient. Further one has to 
choose a value for ky as the value for the specimen 
used by Zehendner is not known. This is so chosen 
that the theoretical value of (Xa/Xx) at - 100 ~ and 
20 ~ temperature gradient coincides with the 
experimentally obtained value. Three different solutions 
are compared with the experimental data: 

1. The variable property anisotropic analysis with 
the temperature distribution along the horizontal faces 
being considered linear. 

2. The variable property anisotropic analysis, with 
the horizontal faces being considered insulated. 

3. The isotropic analysis. 

For the anisotropic analysis, one also needs to know 
the value of Rp. Based on the results presented in 
Table 1, this was chosen to be 2.5 as the specimen was 
of superfine glass wool of density 8 kg/m 3. The values 
of ky obtained for the three solutions with matching 
at - 1 0 0 ~  and 20~ were 2.5 x 10 -5,  
1.07 x 10 - s  and 1.0 x 10 -5 cm 2. These values are in 
order of magnitude agreement with the values expected 

2 . 0  

m 

Curve No. Rp Rk Boundaries ky'10 5cm 2 
1 2.5 1.2 Linear 2.5 
2 2.5 1.0 Insulated 1.07 
3 1.0 1.0 Insulated 1.0 

o Zehendner's date 

1.5 3 ~ !  

l - I /  
1.2 

1.0 I I I I I I I I 
~ -50 -100 -t50 

= " [ m  

Fig. 9. Comparison with Zehendner's data (indicated by 
circles) for a temperature difference of 40 ~ Curve numbers 1 
and 2 represent variable property solutions. Curve 3 represents 
the constant property solution. Property values at mean tem- 
perature are used. 

from the results of Table 1. It will be noted that both 
the anisotropic solutions are in much better agreement 
with the experimental data than the isotropic analysis 
and that the linear temperature boundary condition 
solution fits the data almost exactly above - 100 ~ 
This appears to be reasonable since Zehendner's experi- 
mental set-up permitted convective currents in the guard 
heater section. Such currents would disturb the temper- 
ature distribution at the top and bot tom edges of the 
specimen considerably. As a result the boundary condi- 
tions would be more closely idealised by the linear 
variation condition. 

However at temperatures below - 125 ~ the agree- 
ment between the analysis and the experimental results 
is not good. At these temperatures the Rayleigh 
number is high. Considerable convective flow would 
occur both in the main specimen as well as the guard 
heater section resulting in considerable deviation even 
from the linear temperature distribution. Further- 
more, at an average temperature of - 1 5 0  ~ and a 
temperature difference of 80 ~ the cold face temper- 
ature is 10 ~ lower than the boiling point of oxygen 
(93 ~ Liquefaction of the gas and its effect on the 
apparent thermal conductivity have not been taken 
into account in this analysis and some deviation on 
this account may also be expected. 
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